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ABSTRACT

AN EFFICIENT HARDWARE IMPLEMENTATION OF THE TATE 

PAIRING IN CHARACTERISTIC THREE

Discrete Logarithm systems with bilinear structure recently became an important 

base for succesful cryptographic protocols such as identity-based encryption, short 

signatures and multiparty key exchange. Since the main computational task is the 

evaluation of the bilinear pairings over elliptic curves, which is known to be 

prohibitively expensive, efficient hardware or software implementations are required to 

render them applicable in real life scenarios. In this thesis, an efficient accelerator for 

computing the Tate Pairing in characteristic 3, based on the Modified Duursma Lee 

algorithm is presented. Accelerator implemented shows that it is possible to improve the 

area-time product by roughly 12 times on Field Programmable Gate Array (FPGA), 

compared to estimated values from one of the best known hardware architecture

implemented on a same type of FPGA. Also the computation time is improved up to 16 

times compared to software applications reported.  In addition, the result of an ASIC 

implementation of the algorithm is presented, which is the first hitherto. Both 

implementation results show that pairing based cryptosystems can be used even on 

constrainted devices such as smartcards.
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ÖZET

KARAKTERISTIK ÜÇ ÜZERINDE “TATE PAIRING” 

PROTOKOLUNU UYGULAYAN GÜÇLÜ BIR DONANIM 

TASARIMI

Çift yönlü lineer yapıdaki ayrık logaritma sistemleri güvenilir kriptografik 

protokoller için son dönemlerde önemli bir taban oluşturmaktadır. Kimlik Tabanlı 

Şifreleme (IBE), kısa anahtarlı yapılar, çoklu ortam anahtar değişimi gibi sistemler bu 

protokollere örnek gösterilebilir. Çift yönlü lineer ikililerin eliptik eğriler üzerinde 

hesaplanması çok fazla hesaplama gücü gerektirdiğinden, güçlü donanımsal ve 

yazılımsal uygulamaların geliştirilmesi uygulamaların gerçek hayatta kullanılabilmesi 

açısından kritik öneme sahiptir. Bu tezde “Modified Duursma-Lee” algoritması temel 

alınarak, karakteristik 3 üzerinde “Tate Pairing” protokolünü hesaplayan güçlü bir 

hızlandırıcı yapı sunulmaktadır. Bu hızlandırıcı yapıyla, Sahada Programlanabilir Kapı 

Dizisi (FPGA) üzerindeki bilinen en hızlı donanımsal yapılara göre zaman-alan 

çarpımına göre 12 kata kadar bir iyileşme sağlanabileceği görülmüştür. Bu iyileşmenin 

yazılımsal yapılarla karşılaştırmalarda 16 kat düzeyinde olduğu gözlemlenmiştir. Buna 

ek olarak algoritmanın ilk Uygulamaya Özel Entegre Devresine (ASIC) dair sonuçları da 

sunulmaktadır. Iki uygulamanın sonuçları da ikili tabanlı kriptosistemlerin akıllı kart gibi 

sınırlı araçlarda bile kullanılabileceğini göstermektedir. 



6

TABLE OF CONTENTS

ACKNOWLEDGEMENTS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      iii

ABSTRACT .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      iv

ÖZET  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       v

LIST OF FIGURES    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    viii

LIST OF TABLES     .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .        x

LIST OF ABBREVIATIONS   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       xi

1. INTRODUCTION   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       1

2. ELLIPTIC CURVE CRYPTOGRAPHY AND TATE PAIRING  .  .  .  .  .  .  .  .      11

2.1.   Elliptic Curves    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      11

2.1.1.  Finite Fields.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      11

2.1.2.  Geometric Approach  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     12

2.1.3.  Elliptic Curve Discrete Logarithm Problem  .  .  .  .  .  .  .  .  .  .  .  .  .     14

2.2.   Identity Based Encryption  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       14

2.3.  Development  of  Modified Duursma-Lee  algorithm  implementing  Tate 

  Pairing   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     15

2.4.  Tate Pairing Calculation and Modified Duursma-Lee Algorithm  .  .  .  .  .  .     16

2.5.  Related Work  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       20

2.6.  Our Aim and Contributions .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    21

3. ARITHMETIC IN CHARACTERISTIC THREE AND DESIGN OF THE SUB-

BLOCKS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .      23

3.1.  Characteristic Three Representation  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     23

3.2.  Addition and Subtraction  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    24

3.3.  Cubing   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     25

3.4.  Multiplication .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     29

4. HARDWARE IMPLEMENTATION OF TATE PAIRING BASED ON MODI-

FIED DUURSMA LEE ALGORITHM  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    35

4.1.  GF(36m) Multiplication Block   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     35

4.2.  GF(36m) Cubing Block  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     37

4.3.   The Accelerator Architecture .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    39



7

5. IMPLEMENTATION ASPECTS  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     

42

5.1.  FPGA Implementation   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    42

5.2.  ASIC Implementation .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    44

6.    CONCLUSION.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   50

APPENDIX A: AREA REPORT of ACCELERATOR from BUILD GATES .  .  .  .     52

REFERENCES   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  53



8

LIST OF FIGURES

Figure 1.1. Plaintext, Cipher and Ciphertext.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     1

Figure 1.2. Signature generation and verification  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    3

Figure 1.3. Symmetric Key Cryptography   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     4

Figure 1.4. Asymmetric Key Cryptography    .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     5

Figure 2.1. Finite Field Taxonomy  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    12

Figure 2.2. Point Addition  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     13

Figure 2.3. Point Doubling  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    13

Figure 2.4. The Duursma-Lee Algorithm (char 3)[11] calculating the Tate Pairing 

incharacteristic three.  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       15

Figure 2.5. Tate Pairing and raiseing to Tate power scheme  .  .  .  .  .  .  .  .  .  .  .  .    17

Figure 2.6. The Modified Duursma-Lee Algorithm (char 3)[6]  .  .  .  .  .  .  .  .  .  .     17

Figure 2.7. Tate Pairing calculation structure .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    18

Figure 2.8. Computation loop structure  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   19

Figure 3.1. Serial calculation of Cubing in GF(36m)   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    25



9

Figure 3.2. General structure of cubing circuit for fixed polynomial in GF(3m)  .  .    

28

Figure 3.3. Digit Multiplier  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   .  .  .  .  .  .     30

Figure 3.4. LSE Multiplier  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     31

Figure 3.5. Generic  Polynomial GF(3m) LSE Multiplier  .  .  .  .  .  .  .  .  .  .  .  .  .     32

Figure 3.6. Generic  Polynomial GF(3m) LSE Multiplier  .  .  .  .  .  .  .  .  .  .  .  .  .     33

Figure 3.7. Multiplier Architecture Over GF(3m) .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    34

Figure 4.1. GF(36m) multiplier unit  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    35

Figure 4.2. (32m) multiplier unit .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    36

Figure 4.3. GF(36m) cubing unit  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   38

Figure 4.4. GF(32m) cubing unit  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .   39

Figure 5.1. Tate Pairing accelerator architecture  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    43

Figure 5.2. Full layout of Tate Pairing Accelerator .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    46

Figure 5.3. A portion of layout  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .    47

Figure 5.4. Closer view of layout   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     48



10

LIST OF TABLES

Table 1.1. NIST Recommended Key Sizes   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       8

Table 3.1. Comparison of cubing circuits for GF(397)  .  .  .  .  .  .  .  .  .  .  .  .  .  .      28

Table 3.2. Comparison of LSE Multiplication circuits in GF(397)  .  .  .  .  .  .  .  .      33

Table 4.1. Explanations for the number of clock cycles required for

Modified Duursma-Lee algorithm  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .     40

Table 5.1. Comparison of the work with previous calculations of Modified 

Duursma-Lee Algorithm   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  .       44



11

LIST OF ABBREVIATIONS

AES Advanced Encryption Standard

DES Data Encryption Standard

DLP Discrete Logarithm Problem

DSA Digital Signature Algorithm

ECC Elliptic Curve Cryptography

FPGA Field Programmable Gate Array

IBE Identity Based Encryption

LSE Least Significant Element First

MSE Most Significant Element First

NIST National Institute of Standards and Technology

NSA National Security Agency

PKG Private Key Generator

SHA Secure Hash Algorithm



12

1. INTRODUCTION

Cryptography is basically the technique of hiding information. It is generally 

referred as encryption and decryption. Encryption is the process of converting open 

information to a non-understandable format. Decryption is reversing the operation of 

encryption to make the hidden information available again. As shown in Figure 1.1 the 

term plaintext is used for open information and ciphertext is used for encrypted messages. 

Cipher generally refers to the algorithm used to apply encryption and decryption. 

Figure 1.1.  Plaintext, Cipher and Ciphertext

The origin of the word Cryptography comes from two Greek words, Kryptos

(hidden) and Grafo (write). As understood from the origin, cryptography has a history of 

thousands of years that has started around 4000 years ago in Egypt with non-standard 

hieroglyphs which are carved into monuments. The first cryptos are thought to be aiming 

mystery or having a religious meaning rather than secret communication. After that, it is

known that the Greeks of Classical times and Roman Empire used crypto for military 

purposes. With the development of cryptography, cryptanalysis efforts started to decrypt 

the messages encrypted, without knowing the actual keys.

In the 20th century World War II led to significant developments in cryptography. 

During this war, mechanical and electro mechanical crypto machines started to be used 

widely, and more and more people started to develop secure crypto schemes as well as 

breaking the codes of the enemy. It is assumed that the modern cryptography has started 

with Claude Shannon, who started mathematical cryptography in 1949 with his published 
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work, Communication Theory of Secrecy [1]. In this work, cryptographic applications at 

that time have been divided into three sections; concealing a message into an innocent 

text, privacy systems those aiming to hide the existence of information, and true secrecy 

systems that encrypt messages using mathematical functions. Within a short time, the last 

section, true secrecy systems have become the core of cryptography.

In 1970’s, the first encryption standard, Data Encryption Standard (DES), was

developed by IBM as a response to the call of the National Institute of Standards and 

Technology (NIST) (called the National Bureau of Standards at the time). From that time 

on, many significant algorithms have been used for encryption purposes such as 

Advanced Encryption Standard (AES), RSA and Elliptic Curve Cryptography (ECC) that

will be discussed very briefly in the next few pages [2]. 

In today’s world, cryptography is used in many areas even by ordinary people. 

Primarily, it has been a must in military communication and data storage for a long time. 

It is also used in smart cards, financial services, wireless networks etc. Confidentiality, 

data integrity, authentication, authorization and non-repudiation are the main services that 

cryptography performs. Confidentiality is the secrecy of information to unauthorized 

people maintained by encryption. It should be implemented in such a way that 

unauthorized people can not recover the hidden data by any means. Data integrity is used 

to detect any changes in data done in an unauthorized manner. This may include 

insertion, deletion or substitution of data. Authentication is used to verify the origin of 

information. It is generally provided by digital signatures or message authentication 

codes. Authorization is providing an official permission to perform a security function or 

activity. It is generally done after authentication. If authentication is granted, the user is 

provided the required key or password for the secure application such as access to a 

database or a room. Non-repudiation provides assurance of the integrity and origin of 

data to be verified by a third party. By this way an entity can not deny an involvement to 

an action. 

Approved cryptographic algorithms can be divided in to three main classes, hash 

functions, private key algorithms and public key algorithms. Hash functions can be seen 
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as the simplest ones within these three. They are used to produce a digest of a large data 

that are hard to produce from a different data. These functions are mainly used for 

providing data authentication and integrity services, generating and verifying signatures 

from messages, generating deterministic random numbers and deriving keys. Secure 

Hash Algorithm (SHA) SHA1 is a well known example of hash functions [3, 4, 5]. SHA1

basically produces 160 bit output, called message digest, when a message of length less 

then 264 bits is applied as input. The message digest can be used as an input to the Digital 

Signature Algorithm (DSA) which generates or verifies the signature for the message. 

This process is shown in Figure 1.2.

Figure 1.2.  Signature generation and verification

Private key algorithms (known as symmetric or secret key algorithms also), encrypt

data by using a secret key and it is hard to recover the plaintext without the knowledge of 

this key. Decryption is also done with the same key in this set of algorithms, hence they 

are called symmetric key algorithms. Structures of private key algorithms are shown in

Figure 1.3. These algorithms lose their security if the keys are disclosed to unauthorized 

entities. The main functions of symmetric key algorithms are as follows: they are used to 

maintain data confidentiality, provide authentication and integrity, key establishment and 
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generating deterministic random numbers. DES and AES are two examples of this type 

of algorithms that will be mentioned below [3, 6].

Figure 1.3.  Symmetric Key Cryptography

Public key algorithms (known as asymmetric key algorithms also), use two 

different but mathematically related keys; one is public and one is private. Public key is 

published to everyone by an authority, but the private key should be known by just the 

owner of the key pair. In addition, the public key should not reveal information about the 

private key by any means. Public key algorithms are mainly used for computing digital 

signatures, generating random numbers and establishing cryptographic keying material. 

RSA and ECC are the well known examples of this class [3, 6]. The structures for this set 

of algorithms are shown in Figure 1.4.
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Figure 1.4.  Asymmetric Key Cryptography

Public key and private key systems have advantages and disadvantages over each 

other that will be discussed before moving onto explain DES, AES and RSA algorithms 

in a more detailed way. Private key algorithms are faster than public key algorithms since 

they use shorter key lengths and utilize simpler operations, hence demand less 

computational power. They can generally be implemented in software in an efficient way 

which is generally much harder for public key systems. But the main problem of private 

key algorithms arises from key distribution. For example when an entity sends an 

encrypted message over the internet the same entity have to somehow send the secret key

to the entity that will read the message. This is a real problem since the sender needs to 

use different keys for different set of recipients and these keys should be sent in a secure 

way each time. However, in public key algorithms, key owners publish public keys over 

a book or internet and save the private keys for just themselves. When sender wants to 

send a message it encrypts with the recipients publicly available key and sends the 

ciphertext, the recipient decrypts the message with its private key. This totally solves the 

key distribution problem [7,8].
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Before moving onto the Tate Pairing and elliptic curve cryptography, the evolution 

of three modern crypto algorithms, DES, AES and RSA will be discussed briefly to 

have a better understanding on the subject. With the increasing volume, value and 

confidentiality of data used by governments, industry and other organizations in 1960’s

and early 1970’s, the need for a strong cryptographic algorithm became significant. On 

May 15, 1973, NIST asked for public proposals for a very secure and cheap algorithm

that would be available to the general public and could be used in a wide variety of 

applications to protect non-classified data. IBM submitted its algorithm called Lucifer in 

1974, which was decided to be the best of the candidates after the evaluation was made

with the help of National Security Agency (NSA). In 1976, it was adopted by NIST as a 

federal standard under the name of Data Encryption Standard (DES) and became the 

most widely used encryption algorithm in a very short time with the help of government. 

Unfortunately, with the increase of computational power the security of DES reduced 

significantly and super computers started to crack the codes within days and hours in 

1990’s. With the severe reduction in security of the algorithm, NIST planned the 

replacement of DES in 1997 with the Advanced Encryption Standard (AES). Today, DES 

is generally used with a modification and it is called Triple DES. Basically, the data is 

encrypted three times with two different keys by using standard DES in this version and 

it is still common in many areas such as financial services, smart cards and VPN services

[7].

Technically speaking, DES maintains security by permutations and substitutions. In 

this algorithm, data is encrypted and decrypted in 64-bit blocks, using a 64-bit key. But 

the effective key length is 56 bits since the least significant bit in each byte is a parity bit

and used to maintain odd number of 1’s in that byte. The algorithm ignores these parity 

bits and most significant 7 bits are used resulting in an effective key length of 56 bits. 

The algorithm completes encryption and decryption in 16 rounds, basically repeating the 

same round function 16 times to produce the results. Here, each round increases the 

security level of the algorithm exponentially. As mentioned earlier, DES is a private key 

algorithm and encryption and decryption is done with the same key just reversing the 

order of sub keys used in the rounds [9].
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Towards the middle of 1990’s, the security of DES started to be questioned and it 

was recognized that a 56-bit key was not large enough for high security applications 

with the exponentially increasing computational power. As a result, NIST coordinated an 

open, public competition in 1997 to find its own replacement for DES. This time, the aim 

was to find a very secure and fast algorithm which will have a long life. The call for 

submission ended in 2000 and the winning algorithm Rijndael was announced as the 

Advanced Encryption Standard in November 2001 among five different algorithms [10]. 

In June 2003, the US Government announced that AES may be used for classifiying

information, as well. 

As it was the case with DES, AES is also a block cipher algorithm and it has an 

adjustable block size of. In addition to this, it can be used with three different key sizes, 

128 bits, 192 bits and 256 bits. With 128 bit key size, the AES algorithm has on the order 

of 1021 times more AES 128-bit keys than DES 56-bit keys, making nearly impossible to 

crack it in the foreseeable future with brute force attacks. For the time being only, Side 

Channel Attacks, which attack the implementation rather than the algorithm, became 

successful against AES. These types of attacks are mainly based on the power 

consumption curves of the system. With a non-secure implementation, power 

consumption of the algorithms has a significant dependency on the private key. Different 

from the brute force attacks, this dependency allows cracking AES and DES with a low 

number power consumption curves. This weakness of the implementations can be 

overcome by inserting random numbers to the datapath, without changing the actual 

result. These secure implementations result in a cost of area and reduced clock frequency. 

Another advantage of AES over DES is its suitability for software applications and 

small amount of memory requirement making it cheap for hardware implementations.

With these features, today AES is used worldwide in many applications and by millions 

of people.

RSA is one of the first public key crypto algorithms developed and widely used in 

today’s world. It was invented and named in 1977 by Ron Rivest, Adi Shamir and Len 

Adleman at MIT [11]. The letters RSA are the initials of their surnames. As explained 
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above, public key crypto systems involve two keys, one is public and the other is 

private. In RSA systems, private key is as long as 512, 1024 or 2048 bits depending on 

the required security level. But public key is generally a short number such as 2 3-1, 2 5-1,

2 7-1, 2 16-1. The security of RSA is mainly based on two problems. First problem is 

factorization of large numbers, composed of two large primes and the second problem is 

taking eth roots modulo of a composite m. The main approach to crack RSA is to factor 

modulus n. By factoring the modulus n, the secret key can be easily recovered. Up to 

2005, the known largest modulus that has been factored was 663 bits long with 

distributed computing. So, for high security applications it is required to use 1024 bit or 

higher modulus. 

The main disadvantage of RSA over DES and AES is its speed. Since the key 

lengths are significantly larger than main private key algorithms, it needs much more 

computational power and it is nearly impossible to compute by software in a feasible 

time. Also in hardware it takes much more time to encrypt a message with RSA 

algorithm. In addition to this, with modulus lengths of 4096 or over, hardware became 

prohibitively large for many applications such as smart cards. This disadvantage of 

widely used public key crypto algorithm RSA is being overcome by a relatively new 

approach called Elliptic Curve Cryptography (ECC).  

In this thesis, the implementation of the Tate Pairing based on the modified 

Duursma-Lee algorithm which is built on Elliptic Curve Cryptography is presented. ECC 

is based on the algebraic structure of elliptic curves over finite fields. In 1985 Neal 

Koblitz and Victor S. Miller first proposed the use of elliptic curves in cryptography 

independent from each other [12, 13]. Basically, ECC is based on operations on the 

points that compose elliptic curves. The hardness of the problem comes from the 

irreversibility of the operations without the knowledge of a parameter, the key, depending 

on the algorithm. Dominant operation in ECC is point multiplication which is a relatively 

easy and fast computation. However, the inverse (the elliptic curve discrete logarithm 

problem), being a very difficult problem makes the elliptic curves possible to use in 

cryptography. The main advantage of ECC over RSA is its greater security for the same 

key length. As seen from Table 1.1 below, there is a major difference between the 
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relative key sizes of RSA and ECC, which affects the cost of the cryptosystem very 

closely. The main reason for this is its inverse operation gets harder than inverse 

operation of RSA with increasing key length [14].

Symmetric Key Size

(bits)

RSA and Diffie-Hellman

Key Size (bits)

Elliptic Curve Key Size

(bits)

80 1024 160

112 2048 224

128 3072 256

192 7680 384

256 15360 521

Table 1.1.  NIST Recommended Key Sizes [14]

The smaller key sizes make more compact, power efficient and fast 

implementations possible for a given level of security, hence resulting in cheaper 

implementations of cryptography in the required applications. In addition to this, due to 

smaller area, it becomes easier to implement crypto protocols on constrained devices

such as smart cards. 

Recently pairings have become a new branch of public key cryptography. Simply,

they operate on a pair of points defined in a group that contains all the points of an 

elliptic curve and the point at infinity. The main advantage of the pairings is that, they are 

the only cryptosystem for now that allow Identity Based Encryption (IBE) [15, 16, 17, 

18]. With identity based encryption, any string can be used as the public key resolving 

the problem of public key validity. However, the computational power requirements of 

these pairings make their usage very limited. Among all pairings, Tate pairing is 

considered as the most convenient function in terms of computational cost [19, 20].

The use of Tate Pairing in cryptography first appeared with Victor Miller’s

unpublished paper [21] in 1986 and for a long time it was the most efficient way of 
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computing the Tate Pairing. More recently, they are used to build cryptosystems with 

certain functionality. The concept became practical only with Boneh and Franklin in 

2003 [16], who proposed the first IBE scheme. Until that time, a number of algorithms 

developed to calculate Tate Pairing and much progress have been achieved to make it 

more practical in applications. In this thesis, Tate Pairing using the modified Duursma-

Lee algorithm in characteristic three is implemented.

The algorithm that is implemented in this work first appeared in [22] by Kwon. 

Even though it is possible to implement Tate pairing operations in software, it falls short 

of matching speed requirements of many pairing-based cryptography applications,

especially in embedded systems. Therefore, despite the fact and necessity that designing 

dedicated hardware architectures gained significant importance, there is not much work 

on this subject in the literature. This modified Duursma-Lee algorithm was previously 

implemented as a full dedicated hardware partially. Aim in this thesis is to design an 

accelerator that reduces the computation time and area of Tate pairing in characteristic 

three, to make it practically more applicable on FPGA’s and build the first ASIC

implementation of Tate pairing.

This design was implemented using VHDL. Xilinx ISE was used as the design 

environment, while Modelsim was used as the simulation platform.  For the ASIC,

NEC’s standard cell library built with 0.25µm technology was used. 

The organization of this thesis is as follows. In chapter two, the basics of Elliptic 

Curve Cryptography and Tate Pairing are explained. In this context, finite fields, 

geometric approach to elliptic curves, discrete logarithm problem that enables elliptic 

curves to be used in cryptography, Identity Based Encryption, development of Modified 

Duursma-Lee algorithm implementing Tate Pairing, Tate Pairing calculation, related 

work on the subject and aim and contributions of the thesis are presented. In chapter

three, arithmetic in characteristic three and design of sub-blocks are described. 

Representation of characteristic three, blocks on addition and subtraction, cubing and 

multiplication are discussed. In addition to these, the performances of blocks are 

compared to the previous works in the literature. In the next chapter, hardware 
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implementation of Tate Pairing based on Modified Duursma Lee algorithm is presented. 

GF(36m) multiplication block, GF(36m) cubing block and our accelerator architecture is 

explained in detail. In chapter five the implementation aspects of the developed hardware 

is presented. FPGA implementation results are compared with similar work in the 

literature and the first ASIC implementation results are discussed. Conclusion is the last 

chapter of this thesis. 
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2. ELLIPTIC CURVE CRYPTOGRAPHY AND TATE PAIRING

2.1. Elliptic Curves

Elliptic curves have been studied for a very long time as mathematical entities. 

Based on these studies, it was seen that they have a potential for cryptographic 

applications. In 1985, cryptographic usage of Elliptic Curves was proposed by Koblitz 

and Miller independently from each other [12, 13]. Since then, many protocols were 

developed for cryptographic purposes, including the Tate pairing that is implemented in 

this thesis.

2.1.1. Finite Fields

Operations of ECC are based on finite fields. Fields consist of a set of elements 

with two basic operations, addition and multiplication. When the number of elements in 

these fields is finite, they are called finite fields. Finite fields are divided mainly into two 

sections; prime fields and extension fields. Prime fields are mainly represented as Galois 

Field (p), GF(p). Here p is a prime number and the points of the field are integers of 

modulo p. The other section is extension fields and represented as GF(2n) and GF(pn). In 

GF(2n) field elements can be represented as n-bit binary numbers. GF(pn) is also similar 

to GF(2n) but the base is a prime number rather than 2. In this field, prime numbers are 

generally chosen as small numbers such as 3, 7 etc. The modified Duursma-Lee 

Algorithm implementer here is also built in this extension field GF(3n) called 

characteristic three. Taxonomy of Finite Fields is presented in Figure 2.1.
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Figure 2.1.  Finite Field Taxonomy

2.1.2. Geometric Approach

Points on an elliptic curve over finite fields form an additive group including the 

point at the infinity. The point at the infinity is defined as the identity element. These 

elliptic curve points are represented by two coordinates: P(x,y). Elliptic curves over real 

numbers (R) have a mathematical form of y2 = x3 + a*x + b where x,y,a,b  R. Point 

addition and point doubling on elliptic curve in affine coordinates (The coordinates 

representing any point of an -dimensional affine space by an -tuple of real numbers, 

thus establishing a one-to-one correspondence between and .) are defined

geometrically [23].

Point addition R = P + Q, P ≠ Q can be done geometrically as in Figure 2.2. In 

elliptic curves, the line connecting P & Q intersects the curve at the exact point of –R.
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Figure 2.2.  Point addition

Point Doubling R = P + Q = 2P can be done geometrically as in figure 2.3. The 

tangent to the point P intersects the curve on the exact point –R.

Figure 2.3.  Point doubling
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2.1.3. Elliptic Curve Discrete Logarithm Problem (DLP)

The property of Elliptic Curves that makes the elliptic curves possible to use in 

cryptography is the discrete logarithm problem. This problem can be defined as follows.

Scalar multiplication is a very time consuming operation on elliptic curves. Q = 

k*P, k is an integer and P and Q are points defined over the curves. The Elliptic Curve 

Discrete Logarithm Problem is the difficulty of calculating integer k when the points Q 

and P are known. Elliptic Curve Cryptosystem’s security is directly proportional to the 

size of k. In commercial applications, the size of k is generally chosen more than 160

bits. 

The advantage of ECC over RSA is also depends on the hardness of this problem, 

since the discrete logarithm problem over elliptic curves is a harder problem than the 

discrete logarithm problem over integers mod p. The main solving method of DLP over 

integers “Index Calculus Method” can not be applied to DLP over elliptic curves. Hence 

it is possible to achieve the same level of security with smaller key sizes than RSA [14]. 

2.2. Identity Based Encryption

Identity-based encryption (IBE), which is perhaps the most important application of 

pairing-based cryptography, is a public key cryptosystem that allows any arbitrary string 

to be used as a public key, such as recipients’ email address. This vastly reduces the 

amount of work on behalf of the sender to set up an online lookup for public keys and 

presents novel functionalities especially useful in access control systems and maintaining 

privacy and anonymity. In these systems, trusted third parties called Private Key 

Generator (PKG) generate the private keys correspondingly. In this operation, a master 

private key is established. With this master private key, a private key corresponding to 

the identity can be computed, for instance by combining the email address and master 

key. By this way, messages can be encrypted without the distribution of keys between the 

individuals. This is definitely very useful under situations where the authenticated key 

distribution is not feasible. During the decryption phase, the appropriate key should be 
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obtained from the PKG by the authorized user. In this system, the trustworthiness of 

PKG is highly important since it has the capability of generating users’ private key and 

hence decrypting their messages [15, 19]. 

Shamir introduced the concept of identity-based cryptography in 1984 [15].  

However, the concept became practical only with Boneh and Franklin in 2003 [16], who 

proposed the first Identity Based Encryption (IBE) scheme, by following the idea of 

Kasahara et. al. who used bilinear maps, or pairings over elliptic curves for their scheme

[17]. Today many cryptographic protocols are based on pairings.

2.3. Development of Modified Duursma-Lee algorithm implementing Tate Pairing

Among different pairings, Tate Pairing, originally developed to attack the discrete 

logarithm problem of elliptic curves defined over finite fields by Frey and Rück [24], 

became popular, since it is efficiently computable and achieves its maximum security in 

characteristic three over super singular elliptic curves [25]. For quite a while, Miller’s 

Algorithm [21] had been the most efficient way of Tate pairing until two different works 

[26,27] in 2002  improved the method by reducing the computational complexity. Later, 

in [27,28] tower fields of GF(3m), GF(36m) was proposed. In 2003 Duursma and Lee in 

[29] further improved the implementation of Tate Pairing presenting Duursma-Lee 

algorithm, and extending the computation to hyperelliptic curves. The Duursma-Lee 

algorithm calculating the Tate Pairing is described in Figure 2.4. The main difference of 

Duursma-Lee algorithm from the algorithm implemented in this thesis is the need for 

cube root operations, which results in a harder implementation.

Figure 2.4. The Duursma-Lee Algorithm (char 3)[29] calculating the Tate Pairing in 

characteristic three

input: P = (xp, yp), R = (xr, yr) 

output: t = fP, ((Q))  F*
q

6/ F*
q

3
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01   f = 1 

02   for i in 0 to m-1 loop

03   x1 = x1
3

04   y1 = y1
3

05   µ = x1 + x2 + b 

06   γ = -y1y2 σ

07   g = γ - µp – p2

08   f = fg 

09  x2 = x2
1/3

10 y2 = y2
1/3

11  end loop

return: f

The algorithm that is implemented in this thesis first appeared in [22] by Kwon with 

further improvements and eliminating the cube root operation at the expense of two extra 

cubing operations. However, implementing pairing operations in software falls short of 

matching speed requirements of many pairing-based cryptography applications,

especially in embedded systems. Therefore, designing dedicated hardware architectures 

gained significant importance and became a necessity, since there is not much work on 

this subject in the literature. This modified Duursma-Lee algorithm was previously 

implemented as a dedicated hardware partially only in [25] on FPGA. Aim in this thesis

is to design an accelerator that reduces the computation time and area of Tate pairing in 

characteristic three, to make it practically more applicable on FPGA’s and build the first 

ASIC implementation of Tate pairing.
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2.4. Tate Pairing Calculation and Modified Duursma-Lee Algorithm

The Tate pairing is basically a transformation that takes two points on an elliptic 

curve E± : y2 = x3 – x ± 1 defined over ternary extension field GF(3m) and outputs a 

nonzero element in GF(36m) [219]. The modified Duursma-Lee algorithm described in 

Figure 2.5 computes a nonzero element of GF(36m), which needs to be raised to the Tate 

power є1 = 33m-1 in order to obtain the result of the pairing. The final exponentiation can 

be performed in the same circuitry used for computation of, the Modified Duursma-Lee 

Algorithm and takes comparably much less time[30].

Figure 2.5. Tate Pairing and raiseing to Tate power scheme

Figure 2.6. The Modified Duursma-Lee Algorithm (char 3)[25]

input: P = (xp, yp), R = (xr, yr)  E±[3l](GF(3m))

output: t = e3
3m-1 (P, (R)))  GF(36m)*

01   initialize : t = 1  GF(36m),

          α = xp, β = yp, x = xr
3, y = yr

3, µ = 0  GF(3m)

          d = (±m) mod 3  GF(3)

02   for i in 0 to m-1 loop

03   α = α9, β = β9 (* arithmetic in GF(3m) *)

04   µ = α + x + d (* arithmetic in GF(3m) *)

05   γ = (-µ2)ζ0 + (-βy)ζ1 + (-µ)ζ2 + (0)ζ3 + (-1)ζ4 + (0)ζ5 (*ζ = 3m*)
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06   t = t3 (* cubing in GF(36m) *)

07   t = tγ (* multiplication in GF(36m) *)

08   y = -y (* arithmetic in GF(3m) *)

09  d = (d ± 1) mod 3 

10  end loop

return: t

Inputs to the modified Duursma-Lee algorithm are two points, P = (xp, yp), R = (xr, 

yr) on an elliptic curve constructed in GF(3m). Here m is chosen as a prime number such 

as 97. As the value of m gets bigger, the security of the crypto algorithm increases as 

well. The output of the algorithm, t, is an element of GF(36m). 

Modified Duursma-Lee algorithm consists of mainly two parts; initialization and 

computation loop as shown in Figure 2.6. In the initialization part, two elements of the 

first point, xp, yp, are directly assigned to the registers and the other two elements that 

represents the second point xr, yr are assigned after cubing in GF(3m), also three values 

are assigned to internal elements t, µ and d. 

Figure 2.7. Tate Pairing calculation structure

The second part, loop section is executed m times to calculate the result. The first 

step in the loop is twice cubing of, xp, yp, in GF(3m). In the next step, three elements of 

GF(3m) are added.  Then, one squaring, one multiplication and one negation is performed 

in GF(3m). Next operation is cubing of the t variable in GF(36m). Then a multiplication is 



31

done in GF(36m). The last two operations are negation in GF(3m) and addition in GF(3). 

At the end of this calculation t is returned as the result of the pairing. This structure of 

the calculation is shown in Figure 2.7.

Figure 2.8. Computation loop structure
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Arithmetic operations required to implement Modified Duusma-Lee Algorithm is 

addition, subtraction, cubing and multiplication in GF(3m) and cubing and multiplication 

in the tower extension GF(36m). Cubing is relatively inexpensive operation in 

characteristic three similar to ease of squaring in binary fields and can be implemented by 

just using combinational gates in a single clock cycle. Therefore, multiplication in 

GF(36m) is the main complexity of the pairing[30]. 

Constructing the ternary extension field GF(36m) on the base field of GF(3m) is 

suggested in [28,27] and described explicitly in [25]. Use of extension fields simplifies 

the arithmetic operations, allows parallelization for the cubing and multiplication 

operations, and finally renders the implementation suitable for hardware.

2.5. Related Work

With the advent of elliptic curve cryptography, GF(p) and GF(2m) arithmetic 

attracted enormous attention and important amount of work appeared in the literature 

providing fast and efficient hardware accelerators. In contrast, very small interest in the 

arithmetic of more general extensions field of GF(pm) stems from the fact that the need 

for it has recently appeared with pairings defined over extension fields of characteristic

three. One of the earliest studies is by Page and Smart [32] which described GF(3m) 

arithmetic architectures  for cryptographic applications. They later, implemented Tate 

pairing with Duursma-Lee algorithm using an accelerator for arithmetic in GF(3m) [31]. 

Another work by Kerins et. al [33] implements Miller’s algorithm. They have also 

inversion blocks in characteristic three since Miller’s algorithm requires multiplicative 

inversion operations. In addition, Bertoni et. al. [34] presented efficient GF(pm) 

architectures for cryptographic applications that specifically focus on different multipliers 

with modulo reduction. They, also provided a case study for GF(3m) multipliers. 

Last work mentioned here is Kerins, Marnane, Popovici and Barreto’s Tate pairing 

implementation [25] based on the modified Duursma-Lee algorithm. They presented 

parallel multiplication and cubing units to implement GF(36m) tower field arithmetic. By 
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this approach, it is possible to multiply two ternary polynomials in GF(36m) using the 

same number of clock cycles as multiplying two GF(3m) polynomials, at the expense of 

area overhead and reduced clock frequency. It is also possible to find intermediate 

solutions to reduce the hardware complexity with an increase in the number of clock 

cycles. For instance this can be achieved by scheduling the addition operations after the 

GF(3m) multiplication blocks used in GF(36m) multiplication block. This reduced the 

number of adders used at this stage but increases the number of clock cycles required

[30].

2.6.  Aim and Contributions

This modified Duursma-Lee algorithm was previously implemented as a dedicated 

hardware partially only in [25] on FPGA. Aim of the thesis is to design an accelerator 

that reduces the computation time and area of Tate pairing in characteristic three, to make 

it practically more applicable on FPGA’s and build the first ASIC implementation of Tate 

pairing based on the NEC’s 0.25 µm standard cell technology with 5 metal routing layers.

Contributions can be summarized as follows. First, the work is the first full 

implementation of modified Duursma-Lee algorithm on both FPGA and ASIC. In this 

thesis, sub blocks, datapath and the control unit that calculates the Tate Pairing via 

modified Duursma-Lee algorithm have been built all in hardware. The VHDL codes of 

the design than mapped to proper FPGA devices and synthesized according to standard 

cell approach by using NEC’s 0.25 µm cell library. Even though there are partial works 

on the subject, there is not a full hardware accelerator in the literature for FPGA or ASIC.

 Second, it is demonstrated that subunits in the accelerator and the accelerator 

itself can be improved in terms of both area and time complexity compared to previous 

works in the literature by applying different design techniques. Improvements have been 

achieved in the least-significant-element-first (LSE) multiplier unit compared to the one 

in [25]. In addition to this, the cubing subunit of the accelerator has been improved 

significantly compared to the ones in [25] and [34]. 



34

Third, the actual implementation of modified Duursma-Lee algorithm is in fact 

faster and smaller than the estimated values given in the previous work. The calculation 

time of the algorithm has been improved up to 16 times compared to the best known 

software implementation [35] and more than 3 times compared to best known hardware 

implementation [25]. Also, time and area product has also improved 12 times with the 

suggested implementation [30].
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3. ARITHMETIC IN CHARACTERISTIC THREE AND DESIGN 

OF THE SUB-BLOCKS

In this section, hardware architectures for addition, subtraction, multiplication and 

cubing in GF(3m) are presented.  

3.1. Characteristic Three Representation

Characteristic three arithmetic is slightly more complicated than characteristic two 

arithmetic since coefficients can take three values; {0, 1, 2}. Now, two bits are needed to 

represent each digit in GF(3). There are two common representations:

{0, 1, 2} = {00, 01, 10}                     (3.1) 

{0, 1, 2} = {{00, 01} 10, 11}                            (3.2)

The advantage of the latter representation is that “check if zero operation” is 

implemented by only checking the most significant  bit of the digit since both alternatives 

for representing digit {0} have 0 in the most significant position. The disadvantage, 

however, is that negation is performed by subtracting the digit from zero, which can be 

done by using the addition circuit again in one clock cycle. The negation, on the other 

hand, in the former representation is performed by just swapping the most and the least 

significant bits. This operation can be implemented just by wiring, without active area 

consumption. Also saving one clock cycle compared to the latter representation in 

negation is a critical aspect for achieving a high speed design. Since negation operation is 

used very often especially in performing GF(36m) multiplication, the former 

representation is more advantageous in this case by minimizing the operation time and 

active area usage. 

For arithmetic operations, m bit elements are expressed as 2m bit arrays as follows:

A =  ({aH
m-1, a

L
m-1},. . . . . . . . , {aH

1, a
L

1}, {aH
0, aL

0} )   (3.3)
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3.2.  Addition and Subtraction

Addition and subtraction are performed component wise by using the Boolean 

expression in [31], i.e.  

Ci = Ai + Bi, for i = 0, 1, . . . , m-1     (3.4)

t = (AL
i  BH

i)  (AH
i  BL

i)     (3.5)

CH
i = (AL

i  BL
i)  t     (3.6)

CL
i = (AH

i  BH
i)  t     (3.7)

where  and  stands for logical OR and EXOR operations, respectively. In the 

representation, negation and multiplication of GF(3) element by two are equivalent 

operations and performed by swapping the most and least significant bits of the digit 

representing the element. Therefore, subtraction in GF(3m) is equally efficient as the 

addition in the same field and thus the same adder block is used for both operations. If 

subtraction is needed, bits in each GF(3m) element are individually swapped and 

connected to the adder block. Since this is achieved by only wiring no additional 

hardware resource is used. 

-A =  ({aL
m-1, a

H
m-1},. . . . . . . . , {aL

1, a
H

1}, {aL
0, a

H
0} )     (3.8)

2*A =  ({aL
m-1, a

H
m-1},. . . . . . . . , {aL

1, a
H

1}, {aL
0, a

H
0} )               (3.9)

When implemented on FPGAs, for each GF(3) element addition, two 4-input “look-

up tables” (LUTs) are used. Since one slice is composed of two LUTs, for m-bit long 

GF(3m) additions, m slices are used. This result is almost the same in all papers 

implementing characteristic three addition such as [36]. The delay of the addition 

operation is 5,061 ns on Xilinx Virtex2p 100 device [37]. 
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The VHDL code for this block is written in generic format for any m bit addition. 

3.3. Cubing

For the Modified Duursma-Lee algorithm, cubing operation in GF(36m) is needed to 

calculate

t = t3       (t  GF(36m))   (3.10)

in the loop part of the algorithm. For this operation there are mainly two methods to build 

the hardware architecture. The first method is processing serially by using a GF(3m) 

cubing block and a number of adder/subtracter blocks as shown in Figure 3.1. In this 

method, the area consumption of combinational circuits is relatively small since only one 

GF(3m) cubing circuit is enough. However, a significant number of registers or RAM unit

is needed to store the intermediate values in this approach. Also the clock count is much 

more than the parallel implementation.
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Figure 3.1. Serial calculation of Cubing in GF(36m)

The second method is building a parallel GF(36m) cubing architecture by using 

GF(3m) cubing blocks. In this method, the result is calculated in just one clock cycle and 

no register unit is needed to store any intermediate values. A total of 6 GF(3m) cubing 

circuits and a number of adder/subtracter units are used in parallel in this structure. In this 

work, it is more advantageous to use the second method since clock count is much less 

and the control is also easier than the serial computation. The structure is explained in the 

next section for GF(36m) cubing computation. 

In this section our aim is to build an optimum cubing circuit in GF(3m). Cubing is a 

linear operation in characteristic three and the technique presented in [34] is adopted. 

For characteristic three, the Frobenius map is written as follows:

A 3  (




1

0

m

i

aix
i)3 mod p(x) = 





1

0

m

i
aix

3i  mod p(x)   (3.11)

This formula can be represented as follows:
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Here the degrees of the second term U and the third term V are bigger than m and 

need to be reduced. For p(x) = xm + ptx
t + p0 and t < m/3, the terms can be represented as 

follows [34]:
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Reduction is basically done by additions. For irreducible polynomials, p(x) = xm + 

ptx
t + p0, each xm and x2m are replaced with (-ptx

t - p0) and (a2t–ptp0a
t+1), respectively.  

However, the terms with degrees equal to or bigger than m still remain after the first 

reduction step. This problem can be solved by performing reduction one more time. The 

result of the first reduction can be stored in a register and the second reduction can be 

performed in the next clock cycle. This naturally increases the maximum operating 

frequency of the block. However since the cubing circuit is not in the critical path, the 

second reduction step is implemented in the same clock cycle as the first reduction step. 

This structure enabled to complete the cubing operation in just one clock cycle and 

without using any registers.  

Reduction is optimized for the well known polynomial p(x) = x97 + x16 + 2, [25] and

the terms are calculated to be added in order to achieve reduction in the same clock cycle. 

This optimization for a specific polynomial results in a very efficient implementation. We 

used 111 GF(3) adders to complete the cubing operation. Critical path of the

implemented system consists of three serially connected GF(3) adders. The general 

structure of our cubing block is presented in Figure 3.2. As seen from Table 3.1,

implementation in this thesis is 2 to 5 times more efficient than the implementations 

reported in literature, namely [25] and [34]. Although the implementation details of the 

cubing circuits are not clear in [25] and [34], the improvement in the slice and LUT 

numbers should be due to register free design and doing the reduction for a fixed given 

polynomial [30]. 



40

Figure 3.2. General structure of cubing circuit for fixed polynomial in GF(3m)[30]

Table 3.1. Comparison of cubing circuits for GF(397)

Cubing circuit

Proposed 

circuit Circuit in [25] Circuit in [34]

Number of Slices 116 514

Number of LUTs 222 388*

Max. Frequency 144MHz

   *Estimation by authors of [34]; not the result of an actual implementation.

Another advantage of this cubing block is its suitability for full custom design. The 

reason for this lies in, building the whole block by just using a basic block, GF(3) tate 

adder. Due to this, a very regular structure can be maintained and total area of the block 
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can be minimized. Also, optimizing the GF(3) tate adder block will further lead to faster 

and smaller circuits which is the main goal of full custom designs.

3.4.  Multiplication

Multiplication is the most important operation for pairing implementations due to 

its complexity. Since the modified Duursma Lee algorithm requires GF(36m) 

multiplications, 18 GF(3m) multipliers are needed in parallel, as explained in the next 

section. Therefore, designing an efficient GF(3m) multiplier architecture is the key for an 

efficient hardware accelerator. 

Hardware architectures proposed in the literature for GF(3m) multiplication can be 

treated in three major classes: parallel, serial and digit multipliers [34]. First, parallel 

multipliers multiply two GF(3m) elements in one clock cycle. Although parallel 

multipliers sustain a high throughput, they consume prohibitively large amount of area 

and reduce the maximum clock frequency due to very long critical path. Since area and 

time complexity are very critical parameters for the practical usage of pairings, parallel 

multipliers are not appropriate on constrained devices.

Second, serial multipliers process a single coefficient of the multiplier at each clock 

cycle. These types of multipliers require m clock cycles for each GF(3m) multiplication, 

while their area consumption and critical path delay are relatively small compared to 

other types of multipliers. 

Finally, digit multipliers are very similar to serial multipliers but they process n

coefficients of the multiplier at each clock cycle rather than a single coefficient. 

Consequently, the operation is completed in m/n cycles. The area consumption is more 

than the serial multipliers and increases with n. Since the area critical path delay also 

increases with n, choosing n is an important decision which is mainly influenced by area 

and time concerns. An algorithm for Digit Multiplier is presented in Figure 3.3.
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  Figure 3.3. Digit Multiplier [34]
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i, where ci GF(p)

     C  0

     for i = 0 to m/D - 1 do

          C  biA + C

          A  A αD mod p(α)

     end for

  Return (C)

Serial multipliers are preferred to be used in our implementation, which incur 

increased number of clock cycles, while providing a better solution in terms of area and 

frequency. Serial multipliers can also be treated in two classes: 

i) least-significant-element-first (LSE)

ii) most-significant-element-first (MSE). 

Although there is not much difference between the two types of multipliers the LSE 

Multiplier is implemented. 

As illustrated in Figure 3.4 below, the reduction is performed in interleaved fashion. 
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  Figure 3.4. LSE Multiplier [34]
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          C  biA + C

          A  A α mod p(α)

     end for

  Return (C)

For interleaved reduction, we subtract am(pm-1x
m-1 + . . . + p1x + p0x) from the partial 

result C whenever am  0 since xm = - pm-1x
m-1 - . . .  - p1x - p0.

Two LSE multipliers are designed to examine the effect of fixed versus generic 

polynomials on time and space complexities. In the generic design, shown in Figure 3.5, 

polynomial is given as input to the block. The advantage of the generic design is that it 

can be used with any polynomial in characteristic three. This is an important flexibility 

for systems that may use more than one polynomial. 

In case of fixed polynomial multiplier, shown in Figure 3.6, the coefficients of the 

polynomial can be hardcoded into the multiplier unit resulting in reduction of design 

complexity. For the fixed irreducible polynomial of x97 + x16 + 2, used in many pairing 

based cryptographic systems in literature, only one GF(3m) additions are needed in each 

iteration of interleaved reduction. As illustrated in Table 3.2, the multiplier with 

hardcoded irreducible polynomial is 30% better than the generic multiplier in terms of 

area. Final architecture is synthesized with both multiplier blocks and the results are 

presented in the next section. 
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Figure 3.5. Generic  Polynomial GF(3m) LSE Multiplier

Figure 3.6. Fixed Polynomial GF(3m) LSE Multiplier
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Table 3.2. Comparison of LSE Multiplication circuits in GF(397)

GF(397) Multiplier

Fixed 

LSE

Generic 

LSE

LSE in 

[25] LSE in [34]

Number of Slices 389 599 1006

Number of LUTs 727 1166 600*(LUT+FF)

Max. Frequency 161MHz 161MHz

Total time (s) 0,61 0,61

               *Estimation by paper’s author; not the result of an actual implementation

The proposed GF(3m) LSE multiplier architecture is shown in Figure 3.7.

A Register

Output
Register

Reduction

Adder

A*B(i)

B Input

CONTROL
UNIT

Figure 3.7. LSE multiplier architecture over GF(3m)

The proposed multiplier is implemented for m = 97 on virtex2p-100 for comparison 

purposes since it is the same Xilinx device also used in [25]. As shown in Table 3.2, the 

fixed multiplier is nearly 2.5 times smaller than the architecture in [25] and the generic 
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multiplier consumes around 60% of the area of the same architecture. Since the 

architecture in [25] is not described in detail, only informed guesses can be provided for 

the reasons of the improvement. One reason may be the fact that the multiplicand is not 

stored within the multiplier block and gets its coefficients from the inputs of the block, 

reducing the number of registers by 194 for m = 97. In Table 3.2, the estimation by the 

authors is included for the implementation of LSE multiplier in [34]. Although the 

conversion from LUTs and flip-flops to the number of slices cannot be done easily, it 

should consume at least 600 slices when the design is placed and routed on an FPGA. As 

a result the architecture presented is better than the architectures in the literature to the 

best of our knowledge.



47

4. HARDWARE IMPLEMENTATION OF TATE PAIRING BASED 

ON MODIFIED DUURSMA LEE ALGORITHM

4.1. GF(36m) Multiplication Block

As described in [25], GF(36m) can be considered as an extension field over GF(32m) 

with irreducible polynomial z3 – z  1. Also, as suggested again in the same work [25], 

the multiplication in GF(36m)  can be done in two steps: 

i) Karatsuba multiplication for polynomials with coefficients from GF(32m)

[25], and 

ii) Reduction with irreducible polynomial z3 – z  1. 

Reader can profitably refer to [25] for further details.

+
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Figure 4.1. GF(36m) multiplier unit from [25]

In Figure 4.1 GF(36m) Karatsuba multiplier unit, as proposed in [25], is illustrated, 

where nodes represent the GF(32m) adders, subtractors, and multipliers. As seen from the 

Figure 4.1 this block uses 6 multipliers, 7 adders and 6 subtractors in total. Similarly, 

GF(32m) can also be seen as an extension field over GF(3m) with irreducible polynomial 

y2 + 1. Since the adder/subtracter units operate on the corresponding coefficients of the 

operand polynomials, their structure is the same as GF(3m) adders. GF(32m) multiplier, 

however, consists of GF(3m) adders, subtractors, and multipliers as seen in Figure 4.2.

Each GF(32m) multiplier block uses 3 multipliers, 2 adders and 3 three subtractors in total 

to output two GF(3m) elements, c0 and c1. These elements represent one GF(32m) element 

with c0 the least significant part and c1 the most significant part.

+ +

x

-
-

a0 a1 b0 b1

x x

a0 b0
a1 b1

-
c1 c0

GF(3m) elements

GF(3m) addition

GF(3m) multiplication

GF(3m) subtraction

GF(3m) elements

Figure 4.2. GF(32m) multiplier unit from [25]

As seen in Figure 4.1, GF(36m) Karatsuba multiplier has five GF(32m) elements as 

output. The result of the Karatsuba multiplier has the form 
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To summarize, 18 GF(3m) multipliers and 52 GF(3m) adders are used in one 

GF(36m) multiplier. The advantage of the proposed architecture is that multiplication is 

completed within m clock cycles as a GF(3m) multiplication. On the other hand, a 

significant number of addition circuitry is needed that consume around 5200 slices for m

= 97. In order to explore reduction strategies, two implementations are developed: 

i) All the blocks are parallel

ii) Limited number of Adders after the multipliers

In the latter approach the number of adders is limited after the multipliers to four 

and the operations are scheduled. This approach increases the number of clock cycles by 

five (2.5% of all operations), but significantly reduces the amount of space consumed by 

adders. Similarly, scheduling approach tried to be used to decrease the number of 

multipliers. However, scheduling has not given successful results on FPGA 

implementation. This approach also increased the number of slices 5% approximately.

The main reason for this increase in the hardware is the need for the multiplexers that are 

used to select the correct input to the adders at the correct clock cycle. In addition to this, 

wiring also gets harder with more connections to the same blocks.

The scheduling approach for ASIC implementations is left as the future work since 

it may save chip space in ASIC. Finally, for additions and subtractions the same adder 

block is used by just rewiring the inputs to swap the bits of the subtrahend since it 

negates the GF(3) elements in the employed representation.

4.2. GF(36m) Cubing Block

The second GF(36m) block is for performing cubing operation and as in the case of 

the multiplier, it is constructed using arithmetic units of the base field GF(32m) as 

proposed in [25]. As shown in Figure 4.3, GF(36m) cubing circuitry includes three 
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adder/subtracter and three cubing blocks in GF(32m), while GF(32m) cubing circuit 

includes two GF(3m) cubing circuit without any additional overhead but negation, as 

illustrated in Figure 4.4. Recall that )() 3
0

33
1

63
2

3
0

2
2 aaaa(a 1  zzazz  and z3 = z + 1 

and z6 = z2 – z – 1. Thanks to the efficient GF(3m) cubing blocks, implementing GF(36m) 

cubing block with parallel blocks does not consume much area and allows to finish the 

operation in one clock cycle. Another important aspect of GF(36m) cubing block is its 

register free design, which decreases the area consumed significantly.

In the accelerator, this parallel hardware architecture is used and optimized in terms 

of area and speed especially working on sub blocks. Cubing and multiplication units are 

optimized for specific irreducible polynomials used in the construction of ternary 

extension fields reducing the total area significantly. Additionally, an optimum algorithm 

and architecture is tried to be found to design a suitable Tate pairing accelerator for 

relatively constrained settings.
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GF(32m) elements

GF(32m) cubing

GF(32m) subtraction
/ addition

GF(32m) elements

Figure 4.3. GF(36m) cubing unit from [25]
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Figure 4.4. GF(32m) cubing unit from [25]

4.3. The Accelerator Architecture

After building the efficient blocks that are needed for the accelerator, a control unit 

and a datapath for the Tate Pairing operation is designed. The operation may be divided 

into two big phases as initialization and loop. In Table 4.1 operations are described in 

detail.

In the initialization phase, four GF(3m) elements are input into the accelerator. For 

this part we use 2m-bit long bus structure and connect it to all four related registers. With 

address selection and write signals, input data are written into the accelerator in four 

clock cycles. Cubing operations in steps 3 and 4 also take place during the initialization.

The inputs that will be cubed will pass from the cubing circuitry and will be written to the 

related register. Since our cubing block is purely combinational, no extra clock cycles are 

used at these steps. The length of the databus can be adjusted depending on place-and-

route and timing issues.

When the initialization is completed, accelerator starts operating in a loop. The

control unit is composed of mainly two counters. First counter counts the loop’s 
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execution number to end the operation when completed. Second counter determines 

which step to be executed. 

Table 4.1. Explanations for the number of clock cycles required for modified Duursma-

Lee algorithm

Step Operation

Clock 

Cycles

total cycle for   m 

= 97

initialization 1 α = xp 1 1

initialization 2 ß = yp 1 1

initialization 3 x = xr
3 1 1

initialization 4 y = yr
3 1 1

Loop 5 α = α 3, ß = ß 3 1 97

Loop 6 α = α3, ß = ß3 1 97

Loop 7 u = α + x + d 1 97

Loop 8

 = (-µ2)ζ0 + (-βy)ζ1  

+   (-µ)ζ2 + (-1)ζ4 97 97*97

Loop 9 t = t3 1 97

Loop 10

t = t*, y=-y,

 d=d-1mod3 97 97*97

19210

For the entire operation, only one GF(36m) multiplier is used for step 10, one 

GF(36m) cubing circuit for step 9, two GF(3m) cubing circuits for steps 5 and 6, two 

GF(3m) multipliers for step 8 and a number of adders. Each block starts working 

according to the counter 2. The operations that do not depend on each others’ outputs are 

also overlapped to reduce the number of clock cycles. For instance, in step 10, three 

operations, t = t*, y=-y, d=d-1mod3, are done in the same clock cycle. The main 

advantage of the accelerator is that most of the operations are completed in single clock 
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cycle. If the adder and cubing circuits were implemented with registers, clock count 

would increase around by 400 and registers would increase the area of the accelerator. 

As seen from the table 4.1 the total clock cycle of one execution of Tate pairing is 

19210 when the inputs are written in four clock cycles in total. Here it should be seen that 

98% of the total execution time comes from two multiplication operations one in GF(36m) 

and one in GF(3m). This mainly depends on the one clock cycle implementation of 

Cubing Circuit and the choice of serial LSE Multiplier. According to the requirements of 

the application by changing the serial multipliers with digit multipliers, the clock count 

may be reduced significantly with an area overhead. 
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5. IMPLEMENTATION ASPECTS

5.1. FPGA Implementation

In this work, behavioral simulations are done with Modelsim. Then, blocks and the 

whole accelerator have been mapped to Xilinx Virtex2Pro100 device using Xilinx 8.1 to 

make the comparison easier, since the previous works on the subject used the same 

device. The architecture is shown in Figure 5.1. As seen in Figure 5.1, the architecture is 

composed of 2 GF(3m) Adders, 2 GF(3m) Cubing Circuits, 2 GF(3m) Multiplier Circuits, 1 

GF(36m) Cubing Circuit, 1 GF(36m) Multiplier Circuit, Control Unit and a Register File 

that the inputs, intermediate results and the result is stored. 

Two different versions of the hardware pairing accelerator are synthesized as seen 

from Table 5.1. First accelerator uses the GF(3m) multiplier with fixed reduction 

polynomial of p(x) = x97 + x16 + 2.  It occupies 14267 slices (32% of device) with an 

operating frequency of 77 MHz. In this case, total calculation time is about 251 s. The

second version of the accelerator is implemented with generic GF(3m) multiplier. It 

occupies 16955 slices (38% of device) with an operating frequency of 69 MHz. In this 

case, total calculation time is around 278 s.

The first implementation is 16% better in terms of area, 11% better in terms of 

calculation time and 25% better in terms of area time product. The only advantage of the 

latter implementation for this cost is its multiplier unit’s flexibility for more than one 

polynomial. As indicated in section 3.4, fixed multiplication unit is 30% better than the 

generic one in terms of area. This difference is the main reason of the improvement 

between the two accelerators.

The verification of subblocks are done via modelsim simulations and the test 

vectors are generated manulally.
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Figure 5.1. Tate Pairing accelerator architecture

As seen from Table 5.1, our implementation of Modified Duursma-Lee algorithm is 

almost three times (2.93) better than the previous implementation in the literature in 

terms of execution time and consumes nearly one-fourth of the estimated area in other 

implementations (namely [25]). In terms of area-time product, the Tate pairing 

accelerator with fixed multiplier is 12 times better than the one in [25] and the one with 

generic multiplier is 9 times better than the same implementation. In addition to these,

hardware implementation shortens the calculation time nearly sixteen times compared to 

software implementation reported in [35].  
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Table 5.1. Comparison of the work with previous calculations of Modified Duursma-

Lee Algorithm.

Tate Pairing 

with

fixed multiplier

Tate Pairing 

with generic 

multiplier

Tate pairing 

in [25]*

Tate Pairing in 

Software

[37]

Slices 14267 16955 53406

Op. 

Frequency 77,37 MHz 69,73 MHz 15 MHz

Clock Count 19210 19210 12222

Execution 

Time 250,72 s 278,19 s 0.815 ms 4,05 ms

Area*Time 1 1,33 12.2

*Estimation  by the authors of papers, not a complete implementation

5.2. ASIC Implementation

Vhdl codes of the algorithm are also synthesized for 0.25 m CMOS technology

using the Build Gates version 5.16 standard cell synthesizer. The total cell area is 4.3mm2

excluding the buffers that are needed to satisfy the clock tree and static timing 

requirements, hold time and setup time. The constraints for this synthesis is 100 ns 

period, 15 maximum number of fanouts and 5 ns delay of external signals.

The implementation consumes around 10 mm2 chip area after place and routing 

with 5 Metal technology using the Cadence’s Place and Route tool First Encounter

version 5.20. This tool also inserts the buffers for the clock tree and for satisfying the 

static timing requirements. Constraints for placement and routing are given as 100 ps 

maximum skew, 900 ps maximum clock delay and 700 ps minimum clock delay.

Area report generated by Build Gates after the synthesis is presented in Appendix 

B. In this report, cell area of the accelerator and sub-blocks are presented. As seen in the 

report the main part that consumes cell area is GF(36m) multiplier with 3.33 mm2, 77 % of 
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all area. Compared to GF(36m) multiplier, GF(36m) cubing circuit consumes much less 

area with 0.23mm2, 5.3 % of all area. 

ASIC implementation has reached the frequency of 78 MHz and completes the 

pairing in 250 s.  The computation time on Virtex-2 FPGA and the ASIC is nearly the 

same. We should note here that Virtex-2 devices are based on 90 nm CMOS technology 

with 9 metal routing layers. This shows that with better technology, ASIC 

implementation can become much more advantageous over FPGA implementation in 

terms of computation time, with a small chip area. The verification of the layout is done 

with the netlist generated after the synthesis with Build Gates.

The full layout of the Tate Pairing Accelerator is presented in Figure 5.2. As 

mentioned above the layout is routed with 5 metal layers. The fifth and forth metal layers 

are directly seen from the presented layout as the light blue and orange colors. In this 

picture the lower layers are not very obvious due to highly intense usage of metal layers. 

This property is a result of high wiring need of the blocks. Each bus between the blocks 

generally carries 97 elements which are connected by 194 wires. This high wiring affects 

the active area/total area ratio and lowers it to below 50%. A way of decreasing the area 

of the circuit may be decreasing the sizes of input and output buses down to 8 or 16 bits 

from 194 bits. This will make the wiring easier but the loading of the input parameters 

and the result will take 12 to 24 times more depending on the bus size. Since this portion 

of the calculation time is relatively short, this increase will not affect the performance 

significantly. 

As seen from the Figure 5.2 the x/y proportion of the layout is 0.7 the reason for 

this proportion is 5 metal routing layers. The routing algorithm of First Encounter tool 

that we use for routing is based on selected layers for horizontal and vertical routing 

layers. Metal 1, Metal 3 and Metal 5 layers are used for vertical routing, Metal 2 and 

Metal 4 layers are used for horizontal routing. If the layout of the accelerator was 

designed on a square area horizontal routing would be problematic due to 2 metal layers 

rather than 3. This problem is overcome by changing the x/y ratio to 0.7, by this way 

horizontal and vertical routing is balanced.
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In Figure 5.3 a portion of layout is presented. In this view, third metal layer is also 

seen obviously in green color. The areas close to the power lines are routed lightly 

compared to the inner parts as expected. 

In Figure 5.4 a closer view of layout is presented. In this picture cells of the layout 

and power lines are seen. Red lines are routed in Metal 1 and white lines are routed in 

Metal 2.
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Figure 5.2.  Full layout of Tate Pairing Accelerator
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Figure 5.3.  A portion of layout
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Figure 5.4.  Closer view of layout
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6. CONCLUSION

In this thesis, we have implemented an accelerator implementing the Tate Pairing in 

characteristic three based on the Modified Duursma Lee algorithm. We worked on the

very hot field of cryptography, pairings, which allows the implementation of Identity 

Based Encryption. By using Identity Based Encryption, key distribution problem is 

resolved completely with its property of allowing any public string to be used as key. By 

this way, messages can be encrypted without the distribution of keys between the 

individuals. This is definitely very useful under situations where the authenticated key 

distribution is not feasible.

Our study is to mainly build on Elliptic Curve Cryptography which requires high 

computation power compared to commonly used algorithms such as DES and AES. 

Therefore, the performance and cost of our accelerator have great importance to make the 

usage of Tate Pairing feasible. Due to this, we have designed and optimized our sub-

blocks in characteristic three to obtain a good performance.

Addition/Subtraction, Multiplication and Cubing blocks in GF(3m) are the required 

sub-blocks. Compared to the implementations in the literature significant improvements 

are achieved especially in the Multiplication and Cubing blocks. Then, we have built our 

architecture by using these sub-blocks.

With our parallel computation approach in GF(36m) multiplication and GF(36m) 

cubing block we have obtained a very fast and efficient implementation of algorithm 

compared to the previous works in the literature. The Tate Pairing calculation takes 

around 250s in total with a Virtex-2 FPGA consuming a total of 14267 slices and 

working at 77,37 MHz. Lastly, our accelerator architecture is 12 times better than the 

known best implementation in the literature.

In addition to FPGA implementation, we have built the first ASIC implementation 

in the literature with 0.25m CMOS technology. The total active area has been 4.3 mm2
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excluding the clock tree buffers. The layout area after the place and route with 5 metal 

layers has been 10 mm2. with these results, the area of the circuit is suitable even for 

constrained devices such as smart cards.
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APPENDIX A : AREA REPORT of ACCELERATOR from BUILD 

GATES

Summary Area Report
Source of Area : Timing Library
-------------------
+----------------------------------------------------------------------
------------------+ 
|             Module |             Wireload |     Cell Area |   Net 
Area |    Total Area | 
|--------------------+----------------------+---------------+----------
--+---------------| 
|                MDL | HHNEC25_Conservative | 4291561.43848 |    
0.00000 | 4291561.43848 | 
|   AWDP_INC_0133365 | HHNEC25_Conservative |    1841.66399 |    
0.00000 |    1841.66399 | 
|         AWDP_INC_1 | HHNEC25_Conservative |    1841.66399 |    
0.00000 |    1841.66399 | 
|      CUBIC_GF6_N97 | HHNEC25_Conservative |  234995.19873 |    
0.00000 |  234995.19873 | 
|        CUBIC_N97_0 | HHNEC25_Conservative |   20590.59189 |    
0.00000 |   20590.59189 | 
|        CUBIC_N97_1 | HHNEC25_Conservative |   20590.59189 |    
0.00000 |   20590.59189 | 
|     LSEMUL_GF6_N97 | HHNEC25_Conservative | 3335101.41304 |    
0.00000 | 3335101.41304 | 
|       LSEMUL_N97_0 | HHNEC25_Conservative |  127108.60661 |    
0.00000 |  127108.60661 | 
|       LSEMUL_N97_1 | HHNEC25_Conservative |  131073.53459 |    
0.00000 |  131073.53459 | 
|      TATE_ADDER_N1 | HHNEC25_Conservative |     185.85600 |    
0.00000 |     185.85600 | 
|   TATE_ADDER_N97_0 | HHNEC25_Conservative |   18028.03190 |    
0.00000 |   18028.03190 | 
|        CUBIC_N97_2 | HHNEC25_Conservative |   20691.96789 |    
0.00000 |   20691.96789 | 
|        CUBIC_N97_3 | HHNEC25_Conservative |   21215.74389 |    
0.00000 |   21215.74389 | 
|        CUBIC_N97_4 | HHNEC25_Conservative |   21215.74389 |    
0.00000 |   21215.74389 | 
|        CUBIC_N97_5 | HHNEC25_Conservative |   21215.74389 |    
0.00000 |   21215.74389 | 
|        CUBIC_N97_6 | HHNEC25_Conservative |   21243.90388 |    
0.00000 |   21243.90388 | 
|        CUBIC_N97_7 | HHNEC25_Conservative |   21243.90388 |    
0.00000 |   21243.90388 | 
|  TATE_ADDER_N194_0 | HHNEC25_Conservative |   36056.06380 |    
0.00000 |   36056.06380 | 
|  TATE_ADDER_N194_1 | HHNEC25_Conservative |   36056.06380 |    
0.00000 |   36056.06380 | 
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